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Abstract. Fast gating in time series of patch-clamp
current demands powerful tools to reveal the rate
constants of the adequate Hidden Markov model.
Here, two approaches are presented to improve the
temporal resolution of the direct fit of the time series.
First, the prediction algorithm is extended to include
intermediate currents between the nominal levels as
caused by the anti-aliasing filter. This approach can
reveal rate constants that are about 4 times higher
than the corner frequency of the anti-aliasing filter.
However, this approach is restricted to time series
with very low noise. Second, the direct fit of the time
series is combined with a beta fit, i.e., a fit of the
deviations of the amplitude histogram from the
Gaussian distribution. Since the ‘‘theoretical’’
amplitude histograms for higher-order Bessel filters
cannot be calculated by analytical tools, they are
generated from simulated time series. In a first ap-
proach, a simultaneous fit of the time series and of
the Beta fit is tested. This simultaneous fit, however,
inherits the drawbacks of both approaches, not the
benefits. More successful is a subsequent fit: The fit of
the time series yields a set of rate constants. The
subsequent Beta fit uses the slow rate constants of the
fit of the time series as fixed parameters and the
optimization algorithm is restricted to the fast ones.
The efficiency of this approach is illustrated by means
of time series obtained from simulation and from the
dominant K+ channel in Chara. This shows that
temporal resolution can reach the microsecond range.
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Introduction

Ion channels are not rigid cylinders that facilitate a
steady stream of ions across biological membranes.
Instead, they are vibrating proteins leading to spon-
taneous or agent-induced interruptions of the stream.
The resulting closures and openings are modelled by
means of Markov models (Korn & Horn, 1988; Yeo
et al., 1988; Ball & Rice, 1992; Blunck et al., 1998).
The rate constants of the transitions between the
states of the Markov model even in a single channel
span a wide range from about 1 s)1 to at least 1 ls)l

(Schröder et al., 2004). The upper limit is not known,
because the temporal resolution of classical evalua-
tion algorithms leads to a limit which is about
100,000 s)l (Parzefall et al., 1998; Farokhi et al., 2000;
Zheng et al., 2001; Hansen et al., 2003).

The different approaches commonly employed for
the evaluationof patch-clamp time series offer different
potencies for the analysis of fast gating.Widely applied
is dwell-time analysis (Blunck et al. 1998). In order to
account for fast gating, missed-events corrections have
been suggested (Ball et al., 1993; Draber & Schultze,
1994). However, Farokhi et al. (2000) have found a
horizontal dependence of the evaluated rate-constants
on the ‘‘true’’ rate constants, which is not the optimum
condition for correction algorithms. Dwell time anal-
ysis can become powerful if 2-dimensional histograms
are evaluated (Magleby & Weiss, 1990).

The Beta fit is based on the generation of am-
plitude histograms and fitting their deviations from
Gaussians by beta distributions (FitzHugh, 1983;
Yellen, 1984; Klieber & Gradmann, 1993; Riessner,
1998). However, this approach is restricted to 2-state
Markov models.
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So far, the best results have been obtained with
the prediction fit, which is a direct fit to the time series
using a Maximum Likelihood estimator (Fredkin &
Rice, 1992; Albertsen & Hansen, 1994; Klein, Tim-
mer & Honerkamp, 1997). Even the classical predic-
tion fit can work quite well with rate constants higher
than the filter frequency (Farokhi et al., 2000; Hansen
et al., 2003).

The most comprehensive approach is that of
Venkataramanan et al. (1998a,b, 2000). The memory
introduced by the filter response is included into the
prediction equations by using so-called meta states.
The ensemble of Markov states observed at time t is
expanded to a Markov field comprising the states at t,
t-1 to t-n with n being determined by the order of the
filter. Filter order and thus the size of the Markov
field was reduced by de-convolution of the time series
with the inverse filter. Colored noise, open-channel
noise and the effect of the filter on the noise are in-
cluded into calculated amplitude distribution func-
tions per meta state using an autoregressive (AR)
filter. Furthermore, the drift of the base line can be
incorporated according to Venkataramanan and
Sigworth (2002). This general concept has been
modified by other authors, mainly in order to shorten
computing time. Qin et al. (2000) used a direct opti-
mization approach, which yields the rate constants
and not the transition probabilities (Fredkin & Rice
1992; Albertsen & Hansen 1994). This was achieved
by replacing the Baum-Welch algorithms by a fit
routine. Decreasing computing time was obtained by
reducing the number of meta states by clustering
states of equal conductance for single and multiple
channel records. Fredkin & Rice (2001) achieved a
tremendous acceleration of the computations by ex-
cluding unlikely meta states. Michalek et al. (2000)
also excluded unlikely meta states. However, the re-
placement of the AR filter by an ARMA filter for the
filter response increased computer time. This was
compensated by using an approximated likelihood.

Nevertheless, the computing times are still very
long. In our data from the dominant K+ channel in
Chara, we have 2 to 16 · 106 data points sampled at
200 kHz. Normally, we have at least two channels in
a record, and each channel has to be modelled by 5
states (Farokhi et al. 2000, Hansen et al. 2003). This
takes 4 to 32 h on a 2.5-GHz Athlon computer, still
using the algorithms of Albertsen and Hansen (1994).
In order to account for the filter without increasing
computing time too much, we considered two ap-
proaches: First, we tried an approach (EP fit) that can
be visualized as an extreme reduction of the method
of Venkataramanan et al. (1998a,b, 2000). The
introduction of the filter into the prediction algorithm
of the direct fit of the time series was further simpli-
fied, and we did not consider the effect of the filter on
the noise. Second, it is tested whether a combined
evaluation based on the direct fit of the time series

with simple prediction (SP fit) and on the analysis of
amplitude histograms (Beta fit) can move the time
resolution to faster rate constants. As described be-
low, the Beta fit makes use of the observation that
fast gating causes deviations from the Gaussian shape
of the measured amplitude histograms.

Mathematical Tools

ILLUSTRATION OF THE PROBLEM

The problem (and chance) of high temporal resolu-
tion is illustrated in Fig. 1. In the theory of Markov
processes applied to ion channel analysis, it is as-
sumed that the noise-free signal immediately jumps
from one state of conductivity to another. In a real
experiment, the transition is soft as caused by the
inevitable anti-aliasing filter. Figure 1 shows the re-
sponse of a 4th-order Bessel filter with the sampling
frequency being four times the corner frequency of
the filter. The smooth vertical line shows the true
jump of the Markov process at t/T = 0. The filter
output, presented by the smooth sigmoidal curve,
gives a delayed response.

The dotted vertical line shows where a level
detector would see the jump. This is also the location
that is delivered by the classical prediction fit of the
time series as the average expected time of the jump,
because in 50% of the investigated events this inter-
mediate level would be assigned to the lower level and
in 50% to the higher level.

In Figure 1, the data points before the dotted line
have a higher probability of being assigned to the
lower level, and those behind the dotted line are
presumably assigned to the upper level. The location
of the detected level is delayed by two sampling
periods. However, this is not of concern because the
jump out of the level is delayed by the same interval,
thus leaving the dwell time in the level unaffected.

The major problem that is caused by the filter
results from the fact that the channel may switch
back before the filter has reached the threshold in
Fig. 1. Thus, short jumps may remain undetected.
Jumping is a stochastic process, the rate constants
related to a transition of the Markov model result in
an exponential distribution of dwell times, with the
average of these dwell times being the inverse of the
rate-constant. If the short transitions are not detected
then the average dwell time is moved to longer time
constants and the apparent rate constant is slower
than the original one.

FITTING STRATEGIES

Two approaches provide the fundaments for the
investigations here; the prediction fit and the Beta fit.
The prediction fit uses a prediction equation (see Eq.
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3 below) in order to give an estimate of the Markov
state at the next sampling point of the time series
(Fredkin & Rice, 1992; Albertsen & Hansen, 1994;
Klein, Timmer & Honerkamp, 1997; Farokhi et al.,
2000; Hansen et al., 2003). It is also called a direct fit
of the time series. The Beta fit utilizes the deviations
of the measured amplitude histogram from that of a
gaussian one (FitzHugh, 1983; Yellen, 1984; Klieber
& Gradmann, 1993; Riessner, 1998).

All approaches discussed here are target fits. This
implies that the fit seeks to provide results that are the
target of our interest. In the case of Markov models,
the rate constants are the natural parameters of
modeling. If molecular dynamics are applied to
channel gating, the rate constants, not the transition
probabilities, are the experimental parameters suit-
able for testing the predictions of the model. This is
different from some approaches such as dwell-time
analysis, which normally yields amplitude factors and
time constants of exponentials (Colqhoun et al.,
1996). However, also dwell time analysis can be done
as a target-fit (Kijima & Kijima, 1987; Blunck et al.,
1998; Csanády 2000). Target fits avoid the cumber-
some conversion of amplitude factors and time
constants to rate constants (Jackson, 1997), but
the evaluations depends on a priori knowledge
(assumption) of the generating Markov model.

Markov Models

The gating of ion-channels can be described by
Markov models (Korn & Horn, 1988), which consist
of several states. These states may have different
conductivities or different kinetic behavior. Adjacent

states that cannot be distinguished by conductance or
kinetic behavior can be merged into apparent states
(Hansen Tittor & Gradman, 1983). Here, we use two
different Markov models.

For investigations that are to illustrate basic in-
sights or that are presented in order to show the
failure of a suggested approach, a simple two-state
model

C Ð
1q

2q
O ð1Þ

is used. The factor q is changed in the range tests
below. In order to show that a suggested approach
works even under more complicated conditions, a 5-
state model is used. It has been used by Farokhi et al.
(2000) for the description of the gating of the domi-
nant K+ channel in Chara

AÐ
1:5

0:5
OÐ
10q

7q
GÐ
3:5

4
CÐ
0:5

0:2
Z ð2Þ

(rate constants in ms)1). Its suitability as a model for
testing algorithms arises from the feature that it
comprises a wide spectrum of rate constants from
very fast ones to very slow ones.

Curve-fitting

Below, different convergence criteria are employed:
Maximum Likelihood for the direct fit of the time
series and Least Square for the amplitude histogram.
In either case, fitting is done under the guidance of a
simplex algorithm (Caceci & Cacheris, 1984; Press et
al. 1987). The generation of the start simplex is de-
scribed in the Appendix. According to our experi-
ments, in many fields of numerical evaluations of
biological data, gradient-based methods mostly fail
when the number of free parameters exceeds 2 or 3.

Failures of the fitting process can result from two
causes: First, the convergence criterion may not have
the correct dependence on the parameter sets. It can
be too flat (as in the case of Beta distributions for
slow rate constants) or it can even have its optimum
value at the wrong parameter set (as in the case of the
SP fit at high rate constants) and lead to the wrong
solution. Second, the fitting algorithm (here the sim-
plex) might not be able to find its way from the start
simplex to the correct parameter set.

Here, simulated data are used to test the sug-
gested evaluation algorithms. Thus, the true param-
eter values are a-priori known (in contrast to a real
experiment). This facilitates two different approaches:

(i) Start simplex 1, including the correct param-
eter set ({s1,n} = {ki,j} or a =1 in Eq. A2). This is
employed if it is to be shown that a fit algorithm fails,
according to the statement ‘‘even if the correct value
is known, the algorithm cannot reveal it from fitting
the data’’.

Fig. 1. Response of a 4-pole Bessel filter with a cut-off frequency of

4/T (T being the sampling interval) to a jump in noise-free channel

current (smooth vertical line at time/T=0). The dots on the smooth

sigmoidally increasing curve show the current values sampled at the

output of the filter. The dotted vertical line indicates the jump as

determined by a threshold jump detector. The straight increasing

line (empty circles) presents the approximated response of the filter

used in the fit with extended prediction (EP-fit) below.
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(ii) Start simplex 2 excluding the correct param-
eter set. Using a start simplex that excludes the true
values with a „ 1 resembles the situation of a real
experiment, where the true parameter set is not
known. Then both features are tested: the existence of
a correct convergence criterion and a smooth error
landscape that opens a path to the correct parameter
set.

NEW APPROACHES

First Improvement of the SP Fit: Extended Prediction
Algorithm Accounting for the Slope of the Filter in the
Prediction Algorithm

The classical SP fit has been discussed in detail by
Fredkin & Rice (1992), Albertsen & Hansen (1994),
Klein et al. (1997). More sophisticated approaches
accounting for the filter response are mentioned in
the introduction. Here, we test whether computer
time can be reduced by a strong simplification of
these approaches. The incorporation of meta states
(Venkataramanan et al. 1998a,b, 2000) is replaced by
a case differentiation in the prediction equation, and
the effect of the filter on the noise is ignored. The
filter response is approximated by the straight as-
cending slope in Fig. 1 marked by open circles. This
approximation simplifies the prediction algorithm
described below. It coincides with the true response
at t/T = 2, but has minor deviations at t/T = 1 and
t/T = 3. The improvement over the classical ap-
proach is the smaller deviation from the filter re-
sponse (filled squares), as compared to the dotted line
in Fig. 1, which is used in the simple prediction
algorithm.

Again, the jump is realized too late (here it is
only one sampling period). However, as mentioned
above, the parallel shift of the times of the jumps
into and out of a level does not change dwell
times.

In the classical approach, which does not take
the filter into account, the prediction (forward cal-
culation) for the open state of a two-state O-C model
is

akðOÞ ¼ ak�1ðOÞpOOfOðIkÞ þ ak�1ðCÞpCOfOðIkÞ ð3Þ
with aj(B) being the probability of being in state B at
time t = jT (j = k, k)1), pAB being the probability of
a transition from state A to state B, fB(Ik) being the
probability that the measured current Ik measured at
time t = kT can be assigned to the current of state B.
The probability fB(I) is obtained by fitting the overall
amplitude histogram by a sum of gaussians:

fðIÞ ¼
X
B

fBðIÞ ¼
X
B

FB exp
ðI� IBÞ2

2r2B

 !
ð4Þ

Here, we assume that all rB are equal to r, the noise
of the jump-free time series. The scaling factors Fk
are omitted, because the distributions per level are
normalized to 1.

If a filter is involved, intermediate values of
output current can occur. Figure 2 shows the four
different scenarios, which describe the different ways
from a closed into an open state at time k. The dotted
lines in Figs. 2B, C, and D present the true jump
occurring in channel current. As mentioned above,
the approximation of the filter response by the
straight slope in Fig. 1 results in the delay of the
detected jump by one sampling period. For the sake
of simplicity, this effect is ignored. Ignoring this delay
has the effect that the solid vertical line in Fig. 2
presents the jump that is delivered by the evaluation
algorithm.

The squares in Fig. 2 present the intermediate
level Z resulting from the filter response in Fig. 1.
The partial amplitude histogram related to the
intermediate level Z is calculated from the noise of
the jump-free time series with

fZðIkÞ ¼
1ffiffiffiffiffiffi
2p

p
r
exp

I� 1
2 ðIp þ IaÞ

� �2
2r2

 !
ð5Þ

with Ip and Ia being the levels before and after the
jump, respectively.

From Figs. 2A, B, C, D, the extended prediction
equation can be derived. The scenarios in Figs. 2A, B,
C, D, correspond to the four terms in Eq. 6, respec-
tively, as can easily be seen from a comparison of Eq.
6 with Fig. 2.

akðOÞ¼ak�1ðOÞpOO� fOðyk�1ÞfOðykÞþfzðyk�1ÞfOðykÞ½ 

þak�1ðCÞpCO� fOðyk�1ÞfzðykÞþfzðyk�1ÞfzðykÞ½ 


ð6Þ

It is important to realize that only the probabil-
ities ak and ak-1 occur explicitly in Eq. 6, but not ak-2
at t/T = k)2. The probability ak-2, however, is in-
cluded in Eq. 6 by the differentiation of the four cases
in Fig. 2.

Equations like Eq. 6 have to be set up for each
one of the involved states of the Markov model.
Further, the number of products in each equation
increases with the number of states.

In the above equations, there is the inherent
assumption that the jumps occur at the sampling
points. This, of course, is not quite true. Nevertheless,
the following analysis shows that Eq. 6 is already an
improvement over the classical SP fit with the simple
prediction in Eq. 3 (Albertsen & Hansen, 1994), but
below it is shown that this holds only for very good
SNR.
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In order to determine the rate constants from a
fitting routine the likelihood L is calculated

L ¼
YNS
k¼1

XM
B

akðBÞ ð7Þ

with Ns being the number of all samples, B stands for
all M states with M = mN of the macro-channel
(Colquhoun & Hawkes, 1977, 1990; Blunck et al.,
1998) representing N channels with m states. The
value ak is calculated iteratively from Eq. 3 or Eq. 6.
The rate constants kAB are related to the transition
probabilities pAB as follows (Albertsen & Hansen,
1994):

P ¼ expðK � TÞ ð8aÞ

with P and K being the matrices related to pAB or
kAB, respectively. If the time interval is short with
respect to kAB, the relationship is simpler

pAB ¼ kAB � T ð8bÞ
The Simplex algorithm (see Appendix) employed in
the fitting routine uses kAB and calculates pAB. Thus,
Eq. 8a (or Eq. 8b) does not have to be inverted.

Multi-state Multi-channel Beta Distributions for
Higher-Order Filters

Beta distributions (amplitude histograms) yield an
alternative approach to evaluate fast rate constants
from measured time series (FitzHugh, 1983; Yellen
1984; Klieber & Gradmann, 1993). So far, a general
analysis has been restricted to two-state models.
Riessner (1998) has developed an analytical algo-
rithm to evaluate Hidden Markov models with
more than two states and more than one channel.
However, this analysis is restricted to first-order
filters, which have little relevance in patch-clamp
analysis. For two-state models, Yellen (1984) has
suggested a correction factor to extend the first-
order algorithms to higher-order filters. However,
this has not worked in the case of multi-state
models (probably also not in the case of two-state
models, Riessner 1998).

Utilizing the increase of computer power since
1998, it became possible to use simulations for the
‘‘theoretical’’ amplitude histograms originating from
higher-order filters and multi-state multi-channel
models. For this issue, time series are generated by
simulations as described in the Appendix, and the

Fig. 2. Different scenarios which lead to an open state at time kT. The dotted lines show the true jumps of the Markov model. The

continuous line presents the jump, which is delayed by one sampling period. This delayed jump is the input signal of a filter approximated by

the straight ascending line in Fig. 1. The squares give the approximated sample output currents of the anti-aliasing filter (empty circles in Fig.

1). The four graphs show the filter response for different gating scenarios that would be detected if the prediction algorithm would work

properly. This detected jump is delayed by one period as illustrated in Fig. 1. (A) No jump has occurred. All values remain at the same level.

(B) A jump occurs at t/T = k-3. Then the channel is still at the initial level at t/T = k-2 and at the intermediate level Z at t/T = k-1. This

scenario corresponds to Fig. 1. (C) The jump occurs at t/T k-2. Then t/T = k-2 and t/T = k-1 are still at the initial value. The intermediate

value is reached a t/T = k. (D) A double jump has occurred Then, the initial value is measured still at t/T = k-2, and the values at t/T = k-

1 and t/T = k are at the intermediate level.
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amplitude histograms are generated by standard
procedures.

Multi-channel amplitude distributions (AN) are
calculated iteratively by means of convolution

ANðIÞ ¼
Z

A1ðuÞ�AN�1ðI� uÞdu ð9Þ

with A1 being a single-channel amplitude distribu-
tion and A(N-1) the distribution for (N)1) channels.
Also the amplitude distribution of noise W can be
included by convolution

AðIÞ ¼
Z

ANðuÞ �WðI� uÞdu ð10Þ

In the case of gaussian noise,W(u) can be calculated
from the knowledge of the variance r obtained from
jump-free sections of the time series.

WðuÞ ¼ 1ffiffiffiffiffiffi
2p

p
r
e�

u2

2r2 ð11Þ

In this approach, the spectral distribution of the
noise is not important as long as the gaussian
amplitude distribution is not distorted. Nevertheless,
Eq. 10 offers also the possibility to include non-
gaussian noise by replacing Eq. 11 by the adequate
function.

Beta Fit

Fitting measured amplitude histograms to theoretical
Beta distributions on the basis of an assumed Mar-
kov model minimizes

X2 ¼
XNI
i¼1

ðAexp;i � Atheo;iÞ2

Aexp;i þ 0:1
ð12Þ

Aexp,i is a data point in the amplitude histogram ob-
tained from the measured time series. Atheo,i is a
‘‘theoretical’’ data point in the amplitude histogram
generated by the time series simulated from an as-
sumed Markov model as described above. NI is the
number of data points in the amplitude histograms
(number of intervals on the current axis). The
denominator prevents that the maximum values of
the amplitude histogram get the highest weight. The
highest values are close to Gaussian distribution,
whereas the deviations carrying the information
about fast gating are found at the slope of the dis-
tribution. The value 0.1 is added in order to prevent
overflow resulting from division by zero.

The procedure is time-consuming as each step of
the simplex algorithm requires one simulation of the
time series. However, there is the advantage of Eqs. 9
and 10, which implies that multi-channel Beta dis-
tributions can be obtained from convolution of sin-
gle-channel distributions. Thus, they do not require
the time-consuming simulation of a macro-channel

including the mN states of an m-state N-channel
scenario as in the SP fit of Albertsen & Hansen
(1994).

The Simultanueos Fit of Beta Distributions and Time
Series

Below it is shown that the fit of amplitude histograms
(Beta fit) yields good results for high rate constants,
whereas the direct fit of the time series (SP fit) gives
better approximation for slow rate constants and is
less sensitive to noise.

In order to merge both fits into one routine,
the convergence criterion of the joint fit has to be a
function of the convergence criteria of two indi-
vidual fits. The SP fit maximizes the likelihood L
(Eq. 7), whereas the Beta fit minimizes X2 (Eq. 12).
Thus, the sum of X2 and the inverse of L are
minimized

g lnX2 þ ln 1
L
! Min ð13Þ

The logarithm of L is used because L becomes
very small and this would lead to numerical prob-
lems in a computer if the product 1/L instead of
the sum of )lnak (Eq. 7) would be calculated. This
implies also the usage of lnX2, otherwise the error
functions related to X2 would be much steeper, and
the effect of X2 would override that of lnL in a
fitting routine. Furthermore, there is a big differ-
ence in magnitude between lnX2 and lnL. Thus, a
weighting factor g is introduced. Factor g = 0
implies that the fit is completely based on the SP
fit, whereas very high values of g (e.g., higher than
106) lead to the dominance of the Beta fit.

The Subsequent Simple Prediction/Beta Fit (SQ Fit)

Here, the direct fit of the time series with simple
prediction (SP) and the Beta Fit with 4th order Bessel-
Filter are not combined in parallel but subsequently:
The robustness of the SP fit is used to give a first
estimate of the rate constants. These results are used
to generate a start simplex 1 for the Beta fit. Since the
Beta fit has problems to determine slow rate con-
stants, these rate constants are fixed during this sec-
ond fitting step. This means that the simplex
algorithm leaves the slow rate constants fixed at the
values obtained from the SP fit and varies only the
fast rate constants in order to fit the amplitude his-
togram. The threshold between ‘‘fast’’ and ‘‘slow’’
was set to ¼ of the filter frequency (12.5 ms)1, in our
investigations).

As final result, the slow rate constants from the
SP Fit and the fast ones from the Beta Fit are
taken.
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Testing the Algorithms

Testing the algorithms is mainly based on two kinds
of test. The range test is to investigate the temporal
resolution. A set of about 250 (Figs. 3 and 4) or 50
(Figs. 5 and 8) time series is generated (see Appendix)
with the pair of fast rate constants kij set to q Æ kij,0,
(Eqs. 1 or 2) with q being the number of the time
series and kij,0 being the rate constants of the ‘‘slow-
est’’ time series. These time series are subject to the
inspected algorithm, and it is determined up to which
n the algorithm still yields the rate constants used in
the simulation. The noise test deals with the sensi-
tivity to noise. Time series having all the same rate
constants kij are superimposed by noise of different
strength. This yields the SNR (signal-to-noise ratio)
down to which the true rate constants can be revealed
by the algorithms.

EXTENDED PREDICTION FIT ACCOUNTING FOR THE

FILTER RESPONSE

For the investigations of what the direct fit of the
time series with simple and extended prediction can
do, a simple C)O model is used, and the start
simplex includes the true parameter set. In Fig. 3,
the rate constants are about equal, namely kOC = q
ms)1 and kCO = 2 kOC (with q = 1 to 250). The
performance of the new approach is compared with
that of the classical SP fit (simple prediction fit).
With simple prediction, the evaluated rate constants
are slower than the real ones, as known from Far-
okhi et al. (2000). The results of the new approach
(extended prediction fit) are much closer to the real
values. However, at rate constants higher than 150
ms)1 the fitted rate constants start to exceed the real
ones.

The ‘‘noise of the fit’’ gets obvious from the
scatter in Fig. 3 as the curves are obtained from 250
independent fits with different rate constants. It is
quite low for both kinds of approach in Fig. 3A, B.
The start simplex includes the true rate constants,
however, this is not of any relevance in the case of the
prediction fit, because it is fairly independent of the
starting values (see, for example left-hand side of
Fig. 6).

However, the situation is not so good as may be
suggested by Fig. 3A because these simulations are
done with low noise, SNR = 10 (Eq. 1). Figure 3C,
D shows the dependence for a C)O model with
kCO = 10 ms)1 and kOC = 5 ms)1. It is obvious that
under the conditions of Figs. 3A, B, (SNR > 8), the
fit works quite well. However, the deviations become
serious with SNR close to one. In contrast, the clas-
sical direct fit of the time series with simple prediction
is quite insensitive to noise (The low rate constants
are chosen because they are in the range where both
fits do equally well at very good SNR).

The reason for the failure of the new approach at
high noise levels seems to be quite obvious: often the
noise pretends values close to IZ, the value of the
current on the slope of the filter (Fig. 1). The
assignment of these values to IZ gets a high weight via
Eq. 4, and the assignments to the true full level gets
low weights. In the classical SP fit, the noise has to
shift by half a level to cause a false alarm, whereas in
the new approach a quarter is enough.

Because of this high sensitivity to noise, it has to
be stated that the extended prediction algorithm does
not yield a tremendous improvement over the clas-
sical SP fit. If high temporal resolution is desired,
patch-clamp recordings get very noisy. With a 50
kHz filter, the SNR (Eq. 1) is rarely better than 4,
more often it is close to 2. Thus, it has to be con-
cluded that this approach can be applied only to
patch-clamp data with very good SNRs. With bad
SNRs, the importance of the inclusion of filtered
noise (Venkataramanan et al. 1998a, b, 2000) be-
comes obvious.

BETA DISTRIBUTIONS OF A 2-STATE MODEL

In Fig. 4, again a simple C)O model is used for the
comparison of the performance of the first-order Beta
fit and the higher-order Beta fit with that of the SP fit.
Figure 4A shows that the higher-order fit based on
simulations reaches the same good results as the first-
order fit of the data filtered by a first-order filter. The
results are much better than those of the direct fit of
the time series with simple prediction, but also better
than those of the extended prediction algorithm
(Fig. 3).

The noise test in Fig. 4B shows that the 4th-order
Beta fit of a two-state model (Eq. 1) is reliable for
signal-to-noise ratios down to about 2.

APPLICATION OF THE BETA FIT TO A 5-STATE MODEL

In order to compare the direct fit of the time series
with simple prediction (SP) and the Beta Fit with
4th-order filter (BF4), the 5-state model of Eq. 2 is
used. The SP fit begins from start simplex 2 with
a = 0.5 (see Appendix, Eq. A2), the Beta Fit from
start simplex 1. Figure 5 shows the results. It is
impressive that the SP fit does quite well at low and
medium rate constants. Only at the fast rate con-
stants kOG and kGO, the SP fit does not reach the
original values. The SP fit has the advantage of
being robust. Even though it underestimates the fast
rate constants (Fig. 5C, D) it does so with high
reproducibility. Many runs with different start sim-
plices showed that it is quite independent of the
starting conditions (data not shown).

The Beta fit is very successful when fitting the fast
rate constants of the C-O model (Fig. 4). However, it
fails completely when applied to the 5-state model
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Fig. 3. Comparison of the

performance of the direct fit

of the time series with simple

(SP, Eq. 3) and extended

prediction (EP, Eq. 6) for a

1-channel 2-state model. The

start simplex comprised the

true rate constants (a = 1 in

Eq. A2). The straight lines

mark the correct results. (A,

B) Range test with kco = 2

koc as given on x-axis and

SNR = 10. (C, D) Noise

test with koc = 5 ms)1 and

kco =10 ms)1.

Fig. 4. Comparison of the

performance of the Beta fits

with first- and fourth-order

filters (graphs not

distinguishable) and the

direct fit of the time series

with simple prediction

algorithm (SP) for a 1-

channel 2-state model. The

start simplex comprised the

true rate constants (a = 1 in

Eq. A2). The straight lines

mark the correct results. (A,

B) Range test with kco = 2

koc as given on x-axis and

SNR = 10. (C, D) Noise

test for the Beta fits with

koc = 200 ms)1 and

kco = 400 ms)1.
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(Fig. 5) even if the start simplex includes the correct
values (a = 1 in Eq. A2).

It is obvious that the slow rate constants can-
not be determined by means of the Beta fit, because
they do not cause a deviation from the gaussian
shape of the amplitude histogram. However, a
better performance could be expected for the fast
rate constants kOG and kGO. But even though the
slow rate constants do not influence the shape, they
contribute to the steady-state occupancies of the
states and consequently to the height of the
amplitude distributions. Thus, an error in the slow
rate constants may spoil the estimation of the fast
rate constants.

COMBINING SP FIT AND BETA FIT IN A SIMULTANEOUS
FIT

In order to combine the benefits of SP fit (high reli-
ability at slow rate constants, high independence of fit
performance on start simplex) with those of the Beta
fit (correct fit of fast rate constants), a joint fit is done
as described in the section New Approaches.

Figure 6 shows the dependence of the results of the
simultaneous fit on the weighting factor g (Eq. 13). The
results of the simultaneous fit are not encouraging. In
the case of the slow transitions the joint fit inherits the
high fit-scatter from the Beta fit. For the fast transi-
tions, the rate constants increased monotonously with

Fig. 5. Comparison of SP fit

(SP) and Beta fit using the 5-

state model of Eq. 2 by

studying the influence of the

fast rate constants 0.7

kOG = kGO of the

‘‘measured’’ time series

(given on the x-axis in all

graphs) on the rate constants

delivered by the fits. The

straight lines give the true

values (used for the

simulation of the

‘‘measured’’ time series).

The smooth lines present the

result of the simple

prediction SP fit (SP). The

dots are obtained from a

Beta fit with 4th order filter

(BF4). In the case of the

simple prediction fit, the

start simplex (Eq. A1) is

obtained with w = 2 and

a = 0.5 (Eq. A2), and for

the Beta fit it included the

correct set (a = 1 in Eq.

A2), and w in Eq. A1 is 10.
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g from the too low values of the pure SP fit (g = 0) to
the higher and correct values of the amplitude fit (g
very high). There is no reduction of the scatter of the fit
by the incorporation of the SP fit.

It is to be mentioned that the pure SP fit (left-
hand side of all graphs in Fig. 6) always finds the
same parameters independently of the start simplex.
The pure Beta fit is not successful (right-hand side of
all graphs in Fig. 6) as already seen in Fig. 5.

The Beta fit is not capable of leaving the start
simplex. The reason may be as follows: In one vertex
{sl,n} of the start simplex the ratios of backward and
forward reactions are already identical to the real

values. This vertex already leads to occupations of
the Markov states (and thus of relative heights in the
amplitude histograms), which are already very good.
All other vertices have random occupation proba-
bilities and therefore produce worse amplitude his-
tograms than {s1,n}. This can prevent that the simplex
of the Beta fit begins to crawl away from the start
simplex. In Fig. 6, it can be seen that the fit results
presented by crosses and open circles coincide with
the horizontal lines representing a = 0.5 and a = 2
in Eq. A2, respectively. The SP fit, in contrast, puts
more weight on the absolute values of the rate con-
stants, and thus is not encaged by violations against

Fig. 6. Simultaneous fit of

simple prediction fit and

Beta fit. The dependence on

the weighting factor g (Eq.

13) is tested for the 5-state

model of Eq. 2 (averages of

5 runs) using three different

start simplices (Eq. A2) with

a = 0.5 (empty circles,

upper horizontal line), 1

(filled squares, middle

horizontal line) and 2

(crosses, lower horizontal

line). The width w of the

start simplex in Eq. A1 is 2

for the prediction fit and 10

for the Beta fit. The kij of the

s1,n vertex (Eq. A2) of the

start simplex are given as

horizontal lines. The error

bars resulted from 5

repetitions of the fits. The

outermost left- and right-

hand points result from the

pure SP fit (g = 0) and

from the Beta fit (1/g = 0),

respectively, as indicated by

the arrows in A.
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the occupation probabilities. The important message
of Fig. 6 is that the fitting performance cannot be
improved by an adequate choice of the weighting
factor g in Eq. 13.

TWO-STEP APPROACH OF SP FIT AND BETA FIT (SQ FIT)

The simultaneous fit above fails because SP fit and
Beta fit have contradicting aims, in the case of the SP
fit, the (too) low values of the fast rate constants yield
the best criterion of fitness (maximum likelihood),
and in the case of the Beta fit,the higher (correct) rate
constants give the better criterion (minimum error).
This conflict can be avoided by the subsequent ap-
proach: first, the SP fit is used to give a first estimate
of the rate constants; then, the Beta fit is employed
starting from these results.

In Fig. 7 the 5-state model of Eq. 2 with the fast
rate constants being kOG,0 = 300 ms)1 and
kGO,0 = 210 ms)1 is used to simulate the ‘‘measured’’
time series. Then, the ‘‘fitted’’ time series are obtained
with kOG,0 = q 300 ms)1 and kGO,0 = q 210 ms)1 (q
given at the x-axis in Fig. 7) and the error sum X2 is
calculated by means of Eq. 12. The result is very
encouraging: Plotting X2 over q shows that the
solution of the SP fit is on the slope of the valley in
Fig. 7, and that the best solution (q = 1) is at the
bottom of the error valley. This shows that the error
landscape of Beta fit provides optimum conditions
for finding the ‘‘true’’ values.

Figure 8 shows a range test for the Subsequent-
SP/Beta fit (SQ). The slow rate constants are not
shown, as their behavior is that of the pure SP fit
(Fig. 5). In Fig. 8, the SP fit shows the underestima-

tion of the fast rate constants as already known from
previous simulations (Figs. 3, 4, 6, 7). The results of
the Beta fit are mainly found with the +/) 10% error
range up to values of 500 ms)1.

Not all Beta fits in Fig. 8 resulted in reliable kij,
as becomes obvious from the points between the line
presenting the SP fit and the horizontal lines giving
the 10% error range around the true values. However,
this is not a major problem, because the investigator
has a simple means of detecting the failure of the
fitting routine.

First, if the Beta fit does not move away from
the result of the SP fit, the fit should be repeated.
There is an important feature in Fig. 8, i.e., there
are nearly no results of the Beta fit that are too
high. If a fit is repeated those values of the rate
constants that are higher are expected to be closer to
the true ones.

Fig. 7. One-dimensional error landscape for the Beta fit: The

model of the ‘‘measured’’ time series is that of Eq. 2 with

kOG,0 = 300 ms)1 and kOG,0 = 210 ms)1. X2 is calculated by

means of Eq. 12 as a function of the deviation of the value of

kOG = q kOG,0 and kGO = q kOG,0 from the true values (q = 1).

The encircled point gives the X2 for the value obtained from the SP

fit.

Fig. 8. Range test of the Subsequent SP/Beta fit. The middle

horizontal line gives the true values and the parallel horizontal lines

present 10% deviation.The descending curve presents the results of

the SP fit. The squares show the results of the Subsequent SP/Beta

fit. Start simplex was generated with a = 0.5 (Eq. A2) for the SP

fit. The Subsequent Beta fit started from the fast rate constants of

the SP fit with a = 1. In Fig. 9, the resulting amplitude histograms

are shown for the three circled SQ results.
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Second, the related amplitude histograms of the
Beta fits should be inspected. Figure 9A, B, C shows
amplitude histograms calculated from the encircled
values in Fig. 8. This is compared with the amplitude
histogram obtained from a correct solution (filled
circle in Fig. 8).

Figure 9B shows a perfect fit for the correct
solution marked by the filled circle in Fig. 8A, B. The
amplitude histograms in Figure 9A show a weak
deviation for the rate constant that is too fast
(encircled cross in Fig. 8A, B) and a more significant
deviation in Fig. 9C for the rate constants that are
too slow (encircled square in Fig. 8A, B). Even if the
deviations are small in Fig. 9, they are an indication
that the fit should be repeated. Figure 9 also shows
that the sum of squares (X2 given inside the histo-
grams) can be used to distinguish the better solution
from the less successful ones. Thus, the experimenter
has a means at hand to check the reliability of the fit
results.

Figure 10 shows the results of a noise test. It is
evident that the SQ fit does well down to SNR of
about 2. The low time constants determined by the
pure SP fit are determined with sufficient accuracy, as
already found in Fig. 5. The subsequent Beta fit also
achieves that the fast rate constants kOG and kGO are
determined with high accuracy. However, as already
shown in Fig. 8, the scatter of the fit is serious. The
absence of any monotonous correlation with the
SNR shows that this scatter is of statistical origin
related to the bad fitting performance of the Beta fit.
As mentioned already when discussing Figs. 8 and 9,
it is recommended to repeat the fit and use the
comparison of amplitude histograms (Fig. 9) as a
means of discarding misfits. The variability of re-
peated fits is introduced by the stochastic generation
of the start simplex (Eq. A1) and the stochastic sim-
ulation of the time series.

Table 1 gives an estimate of the computing time
for simulated data. Fitting a measured time series can
take much longer, depending on the data quality.
Especially, fits often have to be repeated several
times. The random choice of the start simplex and the
generation of the simulated time series of the ampli-
tude histograms provide the chance to escape local
extremes. The likelihood and the error of the ampli-

Fig. 9. Amplitude histograms as a means of detecting misfits in

Fig. 8. The histograms belong to time series generated from a 5-

state model (Eq. 2) with the slow kij of the SP fit and kOG and kGO
improved by the Beta fit, which are (A) too large (encircled cross in

Fig. 8), (B) correct (filled circle), and (C) too small (encircled

square). The simulated time series is filtered by a fourth-order

Bessel filter at 50 kHz.

Table 1. Computation time of some of the algorithms

SP BF4 SQ

1 Channel 10–20 min 10–20 min 15–25 min

2 Channels 60–90 min 10–20 min 60–100 min

The tests were performed on a Pentium 4 (2.5 GHz) under the

following conditions: The duration of the simulated time series was

106 sampling points, and the start simplex was constructed as

described above. The Markov model is given by Eq. 2 for q = 30.
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tude histograms are used to select the best solution.
For instance, a single SQ-fit from Chara (5 states, 2
channels, 2 Æ 106 data points) took about 4 h, and the
solution shown in Fig. 11 was the best one out of ten.

Application to Real Data

The SQ fit is applied to patch-clamp data from
Chara. Unfortunately, we have not been able to
achieve 1- or 2-channel recordings. Thus, sections
with only two channels open are cut out of the whole
record and analyzed by the direct fit of the time series
with simple prediction. It was already stated by

Colquhoun and Hawkes (1982) that this procedure
affects only the slow rate constants between shut
states (in this case kCZ and kZC). The SP fit resulted in
the following rate constants

AÐ
3:8

28
OÐ
43

41
GÐ
5:4

2:8
CÐ
0:4

0:2
Z ð14Þ

(rate constants in ms)1). From these rate constants a
time series is simulated (2.3 Æ 106 data points, same
length as the measured time series), and the ampli-
tude histogram for two channels is drawn. It is
obvious that the amplitude histogram of the simu-
lated time series (SP, light gray curve in Fig. 11) sig-
nificantly deviates from the measured one (black

Fig. 10. Noise test of the

Subsequent Beta/SP fit. The

start simplex of the fit is

obtained with w = 2 and

a = 0.5 in Eqs. A1 and A2.

The pure SP fit is given by

the continuous line in most

cases close to the true values

(horizontal line). The

Subsequent SP/Beta fit

(squares) is restricted to the

fast rate constants kOG and

kGO (C and D).
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curve). Now the subsequent Beta fit is performed. It
used the slow rate constants as obtained by the SP fit.
The fast rate constants kOA, kOG and kGO are free.
kOA is not significantly modified by the subsequent
Beta fit but kOG and kGO are strongly increased,
leading to the improved Markov Model.

AÐ
3:8

28
O Ð
1000

939
GÐ
5:4

2:8
CÐ
0:4

0:2
Z ð15Þ

This set of rate constants results in a much better fit
of the measured amplitude histogram (SQ curve in
Fig. 11A). The resulting rate constants are quite high
(kOG = 1000 ms)1 and kGO = 939 ms)1). Thus, a
time series with rate constants being half as fast as
those resulting from the Beta fit is simulated. This
doubles the deviation at the peak of the amplitude

histogram, thus indicating that the transition rates
between O and G are really in the range of 0.5 to 1
ls)1 (data not shown). These values are similar to
those given by Schröder et al. (2004), which have
been evaluated from distributions-per-level obtained
from Chara.

It may be questioned whether it makes sense to
use three free parameters in the amplitude fit. Simu-
lations have shown that the SP fit may cause the
following problem: a misfit of kOA can be compen-
sated by a misfit of kOG in such a way that the relative
occupation probabilities are preserved. Figure 11B
shows the results of two simulations: the black curve
is identical to the SQ curve in Fig. 11A. This is the
best fit with the rate constants of Eq. 15. The grey
curve in Fig. 11B is obtained also from the model in
Eq. 15 but with kOA and kOG being doubled (this
preserves the occupation probability of the open
states). The difference in Fig. 11B is quite obvious
and can be used by the fitting routine to distinguish
the two parameter sets. Thus, all three rate constants
have to be included in the amplitude fit in order to
repair the failure of the SP-fit. However, it has to be
mentioned that for values of kOA below 30 000 the
SP-fit alone has found the correct value. It has not
been investigated whether it is a general rule that this
limit is always close to half of the sampling frequency.

In contrast to the investigations with simulated
data as used in Figs. 2 to 10, the fit of the measured
amplitude histogram in Fig. 11 is not quite perfect.
However, a better fit cannot be achieved on the basis
of the employed 5-state model. The data shown are
the best out of 30 fits, each taking about 3 to 5 hours
because they were 2-channel fits. It has to be stated
that real data are more complicated than simulated
data.

In order to test the solution of the SQ fit a new
time series is simulated with the rate constants of Eq.
15, using artificial white noise with the same r as the
measured time series. The SP fit of this time series
results in

AÐ
3:3

28
OÐ
130

138
GÐ
8:2

3:6
CÐ
0:9

0:5
Z ð16Þ

(rate constants in ms)1). The rate constants should
be the same as those in Eq. 14. However, the values of
kOG and kGO are twice as high. In a next attempt, a
time series is generated from Eq. 15 as above, but the
colored noise is taken from an obviously jump-free
time series at 0 mV from the same patch. Using
‘‘real’’ noise changes the result of the SP fit of this
time series to

AÐ
3:8

20
OÐ
43

59
GÐ
6:6

3:3
CÐ
0:7

0:3
Z ð17Þ

(rate constants in ms)1). The rate constants of Eq. 17
are very close to those of Eq. 14. This leads to two

Fig. 11. (A) Comparison of the amplitude histograms obtained

from time series generated from the results of the SP fit (SP) and of

the subsequent Beta fit (SQ) of a 2-channel time series from Chara.

The amplitude histogram of the experimental data is given by the

black line. (B) Demonstration of the necessity of using three rate

constants for the fit of the amplitude histogram of the model in Eq.

15. Black curve: Eq. 18 with the rate constants as given at the

arrows. Grey curve: Eq. 18 with kOA and kOG being doubled.
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conclusions. First, the rate constants of Eq. 15 are the
best estimates of those of the measured time series.
Second, the choice of the correct noise is important.
This stresses the importance of using filtered noise in
the approach of Venkataramanan et al. 1998a,b;
2000).

Conclusion

Two basically different approaches have been tested
to increase temporal resolution of the direct fit of the
time series, one trying to improve the prediction
algorithms of the SP fit (EP fit) with moderate in-
crease of computing time, the other one combining
the SP fit with the Beta fit (Subsequent SP/Beta fit).
The simulations above show that inclusion of the
filter response into the prediction algorithms of the
direct fit of the time series can yield a higher temporal
resolution. However, this holds only if the signal-to-
noise ratio is excellent. This is a severe restriction for
the application of this method, because in broadband
recordings of patch-clamp current the SNR is usually
worse than 4. Thus, it has to be concluded that the
usage of filtered noise is a salient feature of the
method of Venkataramanan et al. (1998a,b; 2000).
This has stimulated the search for an alternative ap-
proach to account for filtering without increasing
computing time too much.

In contrast to our expectations, the simulta-
neous fit of the time series and of beta distributions
is not efficient. Obviously, it inherits only the faults
of its parents, but not the benefits. This is probably
caused by the fact that in the case of fast rate
constants, SP fit and Beta fit are led by contradict-
ing criteria of convergence to different optimum
parameters sets.

Much more successful is the Subsequent SP/Beta
fit. Even though the ‘‘theoretical’’ amplitude histo-
grams have to be obtained from simulations of the
time series for each iteration step in the curve fitting
routine, the extra cost of computing time is still small
compared to that required for the calculation of the
Likelihood of the time series (Eq. 7). Figures 8, 10
and 11 show that a high temporal resolution far be-
yond the corner frequency of the anti-aliasing filter
can be achieved even for 5-state models. Thus, this
approach has the power to improve the temporal
resolution of most of the patch-clamp recordings
occurring in a real experiment.

Appendix

GENERATION OF THE START SIMPLEX

A simplex is a geometrical figure with N+1 corners
(vertices) in an N-dimensional parameter space. The

fitting routine starts from a start simplex, which has
to be suggested by the investigator. Then it moves
like an amoeba (Press et al., 1987) through the N-
dimensional parameter space and searches for the
optimum value of the convergence criterion.

The start simplex is generated as follows: A set
of parameters {S1,n} is guessed by the experimenter.
This set presents a point (vertex) in the N-dimen-
sional space of the fit parameters with n = 1...N
being the index of the fit parameters, e.g., obtained
from kij after arranging them in a sequential order.
The simplex with N+1 vertices is generated as
follows. The first vertex is {s1,n}. Additional vertices
(sm,n with m = 2 to N+1) are calculated from the
following equation:

sm;n ¼ s1;n � wr ðA1Þ

with w being the selected width of the start simplex
and r a random number between )1 and 1. In
section ‘‘Testing the algorithms’’, the vertex S1,n is
obtained from the rate constants kij of the simula-
tions

fs1;ng ¼ faki;jg ðA2Þ

with the factor a being chosen by the experimenter
as explained below. A width of w = 2 is used for
the simple prediction fit, and w = 10 for the
amplitude fit (Beta fit). The random number r has
to be taken N2 times from a random generator in
order to generate the elements of the N · (N+1)
matrix, which represents the N+1 vertices. This set
of N+1 nondegenerate vertices is called the start
simplex.

SIMULATION OF SURROGATE TIME SERIES

Surrogate time series are used for two purposes. First,
they are employed to generate simulated ‘‘measured’’
time series, which serve as examples for the applica-
tion of the new tools. Second, they are required for
the Beta fit to generate ‘‘theoretical’’ time series for
the construction of ‘‘theoretical amplitude histo-
grams’’. The basic approach of generating time series
from a selected Markov model with an assumed set of
states and rate constants has been described in pre-
vious papers (Blunck et al., 1998; Caliebe, Rösler &
Hansen, 2002; Riessner et al., 2002, Schröder et al.,
2004, program available at http://www.zbm.uni-
kiel.de/software). Two random numbers are in-
volved:

The first one (n1M[0,1]) is used to calculate the
time of the next jump (Dt) from the source state Rr
to the sink (destination) state Rs in continuous time,
with krs, ksr being the rate constants of the transi-
tions between Rs and Rr. It is obtained from the
inversion of the dwell time distribution of the source
state Rr
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Dt ¼ � 1

krr
lnðn1Þ with

X
s 6¼r

krs ¼ �krr ðA3a; bÞ

s labels all possible sink states for a jump out of the
present state Rr. The second random number n2
(uniformly distributed, 0 £ n2 £ 1) gives the target
of the jump (sink state Rs). The section between 0
and 1 is divided into sections of length krs/-krr (Eq.
A3b) assigned to the states Rs. The state Rs in whose
section n2 happens to fall is called the sink (desti-
nation) state. The system still remains in state Rr for
the time Dt. Then, the jump to Rs occurs, and after
this jump, the algorithm starts again from this new
state by generating two new random numbers. It has
been found that a length of 107 data-points is suf-
ficient to keep the statistical variance of the ‘‘theo-
retical time series’’ small enough.

This time series is superimposed by white noise as
defined by the selected signal-to-noise ratio (SNR)

SNR ¼ DI2

r2
ðA4Þ

with DI being the single-channel current and r2 the
variance of the noise. The resulting signal is fed into
the same filter as used for the filtering of the experi-
mental data.

In all simulations, the corner frequency of the
anti-aliasing Bessel filter is 50 kHz and the sampling
rate is 200 kHz, as commonly used in our group for
the investigation of fast gating (Farokhi et al. 2000,
Hansen et al. 2003).

This work was supported by the Deutsche Forschungsgemeinschaft
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